Solving the systems of equations arising in the discretization of some nonlinear P.D.E.'s by implicit Runge-Kutta methods

نویسندگان

  • GEORGIOS AKRIVIS
  • VASSILIOS A. DOUGALIS
  • OHANNES KARAKASHIAN
چکیده

We construct and analyze iterative methods for the efficient solution of the nonlinear equations that result from the application of Implicit Runge–Kutta methods to the temporal integration of nonlinear evolution equations. Some of the schemes we consider have as starting point Newton’s method and can be applied to a large class of evolution equations. RÈSUMÈ. On construit et analyse des méthodes itératives permettant une rśolution efficace des systèmes non linéaires issus de la discrétisation en temps d’équations d’évolution non linéaires par des méthodes de Runge–Kutta implicites. Certains schémas considérés dérivent de la méthode de Newton et s’appliquent à une large classe d’équations non linéaires.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Implementation of Predictors for Additive Semi-Implicit Runge--Kutta Methods

Abstract. Space discretization of some time-dependent partial differential equations gives rise to stiff systems of ordinary differential equations. In this case, implicit methods should be used and therefore, in general, nonlinear systems must be solved. The solutions to these systems are approximated by iterative schemes and, in order to obtain an efficient code, good initializers should be u...

متن کامل

Differential transform method for a a nonlinear system of differential equations arising in HIV infection of CD4+T cell

In this paper, differential transform method (DTM) is described and is applied to solve systems of nonlinear ordinary differential equations which is arising in HIV infections of cell. Intervals of validity of the solution will be extended by using Pade approximation. The results also will be compared with those results obtained by Runge-Kutta method. The technique is described and is illustrat...

متن کامل

Linearly implicit methods for nonlinear evolution equations

We construct and analyze combinations of rational implicit and explicit multistep methods for nonlinear evolution equations and extend thus recent results concerning the discretization of nonlinear parabolic equations. The resulting schemes are linearly implicit and include as particular cases implicit–explicit multistep schemes as well as the combination of implicit Runge–Kutta schemes and ext...

متن کامل

Implicit solution of the unsteady Euler equations for high-order accurate discontinuous Galerkin discretizations

Efficient solution techniques for high-order accurate time-dependent problems are investigated for solving the two-dimensional non-linear Euler equations in this work. The spatial discretization consists of a high-order accurate Discontinuous Galerkin (DG) approach. Implicit time-integration techniques are considered exclusively in order to avoid the stability restrictions of explicit methods. ...

متن کامل

Stability Analysis of Galerkin/Runge-Kutta Navier-Stokes Discretisations on Unstructured Grids

This paper presents a timestep stability analysis for a class of discretisations applied to the linearised form of the Navier-Stokes equations on a 3D domain with periodic boundary conditions. Using a suitable deeni-tion of thèperturbation energy' it is shown that the energy is monotonically decreasing for both the original p.d.e. and the semi-discrete system of o.d.e.'s arising from a Galerkin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015